Параллельные прямые признаки доказательства

ГЛАВА III.
ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ

§ 35. ПРИЗНАКИ ПАРАЛЛЕЛЬНОСТИ ДВУХ ПРЯМЫХ.

Теорема о том, что два перпендикуляра к одной прямой параллельны (§ 33), даёт признак параллельности двух прямых. Можно вывести более общие признаки параллельности двух прямых.

1. Первый признак параллельности.

Если при пересечении двух прямых третьей внутренние накрест лежащие углы равны, то эти прямые параллельны.

Пусть прямые АВ и СD пересечены прямой ЕF и / 1 = / 2. Возьмём точку О — середину отрезка КL секущей ЕF (черт. 189).

Опустим из точки О перпендикуляр ОМ на прямую АВ и продолжим его до пересечения с прямой СD, АВ_|_МN. Докажем, что и СD_|_МN.
Для этого рассмотрим два треугольника: МОЕ и NОК. Эти треугольники равны между собой. В самом деле: / 1 = / 2 по условию теоремы; ОK = ОL — по построению;
/ МОL = / NОК, как вертикальные углы. Таким образом, сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника; следовательно, /\ МОL = /\ NОК, а отсюда и
/ LМО = / КNО, но / LМО прямой, значит, и / КNО тоже прямой. Таким образом, прямые АВ и СD перпендикулярны к одной и той же прямой МN, следовательно, они параллельны (§ 33), что и требовалось доказать.

Примечание. Пересечение прямых МО и СD может быть установлено путём поворота треугольника МОL вокруг точки О на 180°.

2. Второй признак параллельности.

Посмотрим, будут ли параллельны прямые АВ и СD, если при пересечении их третьей прямой ЕF равны соответственные углы.

Пусть какие-нибудь соответственные углы равны, например / 3 = / 2 (черт. 190);
/ 3 = / 1, как углы вертикальные; значит, / 2 будет равен / 1. Но углы 2 и 1 — внутренние накрест лежащие углы, а мы уже знаем, что если при пересечении двух прямых третьей внутренние накрест лежащие углы равны, то эти прямые параллельны. Следовательно, АВ || СD.

Если при пересечении двух прямых третьей соответственные углы равны, то эти две прямые параллельны.

На этом свойстве основано построение параллельных прямых при помощи линейки и чертёжного треугольника. Выполняется это следующим образом.

Приложим треугольник к линейке так, как это показано на чертеже 191. Будем передвигать треугольник так, чтобы одна его сторона скользила по линейке, а по какой-либо другой стороне треугольника проведём несколько прямых. Эти прямые будут параллельны.

3. Третий признак параллельности.

Пусть нам известно, что при пересечении двух прямых АВ и СD третьей прямой сумма каких-нибудь внутренних односторонних углов равна 2d (или 180°). Будут ли в этом случае прямые АВ и СD параллельны (черт. 192).

Пусть / 1 и / 2—внутренние односторонние углы и в сумме составляют 2d.
Но / 3 + / 2 = 2d, как углы смежные. Следовательно, / 1 + / 2 = / 3+ / 2.

Отсюда / 1 = / 3, а эти углы внутренние накрест лежащие. Следовательно, АВ || СD.

Если при пересечении двух прямых третьей сумма внутренних односторонних углов равна 2d, то эти две прямые параллельны.

Доказать, что прямые параллельны:
а) если внешние накрест лежащие углы равны (черт. 193);
б) если сумма внешних односторонних углов равняется 2d (черт. 194).

Признаки параллельности двух прямых

В 7 классе мы говорили о том, что две прямые либо имеют только одну общую точку, т. е. пересекаются, либо не имеют общих точек, т. е. не пересекаются.

Две прямые на плоскости называются параллельными, если они не пересекаются.

Два отрезка называются параллельными , если они лежат на параллельных прямых. Параллельность прямых AB и CD, a и b (отрезков MN и PQ) обозначается так: AB || CD, a || b (MN || PQ).

Рассмотрим прямые a и b, а также прямую c, пересекающую их в двух точках (рис. 10). Прямую c назовем секущей по отношению к прямым a и b. Углы 1 и 3, а также 2 и 4 назовем накрест лежащими углами , образованными при пересечении прямых a и b секущей c.
Теорема

Если при пересечении двух прямых секущей накрест лежащие углы равны, то эти прямые параллельны.

Доказательство. Пусть при пересечении прямых a и b секущей AB накрест лежащие углы 1 и 2 равны (рис. 11, а). Докажем, что прямые a и b параллельны.

Если предположить, что прямые a и b пересекаются в некоторой точке C (рис. 11, б), то получится треугольник ABC, внешний угол которого (угол 1 на рисунке 11, б) равен углу этого треугольника, не смежному с ним. Но этого быть не может. Следовательно, прямые a и b параллельны. Теорема доказана.

При пересечении двух прямых секущей наряду с накрест лежащими углами образуются и другие углы (рис. 12). Назовем углы 1 и 5, 4 и 8, 2 и 6, 3 и 7 соответственными , а углы 4 и 5, 3 и 6 односторонними . Из доказанной теоремы вытекают два следствия.

Если при пересечении двух прямых секущей соответственные углы равны, то эти прямые параллельны.

Пусть соответственные углы 1 и 2 равны (рис. 13): ∠1 = ∠2. Так как вертикальные углы 2 и 3 равны, то ∠1 = ∠3, т. е. равны накрест лежащие углы 1 и 3. Следовательно, a || b.
Следствие 2

Если при пересечении двух прямых секущей сумма односторонних углов равна 180º, то эти прямые параллельны.

Пусть сумма односторонних углов равна 180º (рис. 14): ∠1 + ∠2 = 180º.

Сумма смежных углов 3 и 2 также равна 180º:

Из этих двух равенств получаем ∠1 = ∠3, т. е. равны накрест лежащие углы 1 и 3.

Признаки параллельности прямых

Признаки параллельности прямых:

1) Если внутренние накрест лежащие углы равны, то прямые параллельны.

2) Если соответственные углы равны, то прямые параллельны.

3) Если сумма внутренних односторонних углов равна 180, то то прямые параллельны.

4) Если две прямые параллельны третьей прямой, то они параллельны между собой.

5) Если две прямые перпендикулярны третьей прямой, то они параллельны между собой.

wiki.eduVdom.com

Инструменты пользователя

Инструменты сайта

Боковая панель

Геометрия:

Контакты

Признаки параллельности двух прямых. Свойства параллельных прямых

Признаки параллельности двух прямых

Теорема 1. Если при пересечении двух прямых секущей:

прямые параллельны (рис.1).

Доказательство. Ограничимся доказательством случая 1.

Пусть при пересечении прямых а и b секущей АВ накрест лежащие углы равны. Например, ∠ 4 = ∠ 6. Докажем, что а || b.

Предположим, что прямые а и b не параллельны. Тогда они пересекаются в некоторой точке М и, следовательно, один из углов 4 или 6 будет внешним углом треугольника АВМ. Пусть для определенности ∠ 4 — внешний угол треугольника АВМ, а ∠ 6 — внутренний. Из теоремы о внешнем угле треугольника следует, что ∠ 4 больше ∠ 6, а это противоречит условию, значит, прямые а и 6 не могут пересекаться, поэтому они параллельны.

Следствие 1 . Две различные прямые на плоскости, перпендикулярные одной и той же прямой, параллельны (рис.2).

Замечание. Способ, которым мы только что доказали случай 1 теоремы 1, называется методом доказательства от противного или приведением к нелепости. Первое название этот способ получил потому, что в начале рассуждения делается предположение, противное (противоположное) тому, что требуется доказать. Приведением к нелепости он называется вследствие того, что, рассуждая на основании сделанного предположения, мы приходим к нелепому выводу (к абсурду). Получение такого вывода заставляет нас отвергнуть сделанное вначале допущение и принять то, которое требовалось доказать.

Задача 1. Построить прямую, проходящую через данную точку М и параллельную данной прямой а, не проходящей через точку М.

Решение. Проводим через точку М прямую р перпендикулярно прямой а (рис. 3).

Затем проводим через точку М прямую b перпендикулярно прямой р. Прямая b параллельна прямой а согласно следствию из теоремы 1.

Из рассмотренной задачи следует важный вывод:
через точку, не лежащую на данной прямой, всегда можно провести прямую, параллельную данной.

Основное свойство параллельных прямых состоит в следующем.

Аксиома параллельных прямых. Через данную точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.

Рассмотрим некоторые свойства параллельных прямых, которые следуют из этой аксиомы.

1) Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую (рис.4).

2) Если две различные прямые параллельны третьей прямой, то они параллельны (рис.5).

Справедлива и следующая теорема.

Теорема 2. Если две параллельные прямые пересечены секущей, то:

Следствие 2. Если прямая перпендикулярна к одной из двух параллельных прямых, то она перпендикулярна и к другой (см. рис.2).

Замечание. Теорема 2 называется обратной теореме 1. Заключение теоремы 1 является условием теоремы 2. А условие теоремы 1 является заключением теоремы 2. Не всякая теорема имеет обратную, т. е. если данная теорема верна, то обратная теорема может быть неверна.

Поясним это на примере теоремы о вертикальных углах. Эту теорему можно сформулировать так: если два угла вертикальные, то они равны. Обратная ей теорема была бы такой: если два угла равны, то они вертикальные. А это, конечно, неверно. Два равных угла вовсе не обязаны быть вертикальными.

Пример 1. Две параллельные прямые пересечены третьей. Известно, что разность двух внутренних односторонних углов равна 30°. Найти эти углы.

Решение. Пусть условию отвечает рисунок 6.

Углы 1 и 2 внутренние односторонние, их сумма равна 180°, т. е.
∠ l + ∠ 2 = 180°. (1)

Обозначим градусную меру угла 1 через х. По условию ∠ 2 — х = 30°, или ∠ 2 = 30° + x.

Подставим в равенство (1) значения углов 1 и 2, получим
х + 30° + х = 180°.

Решая это уравнение, получим х = 75°, т. е.
∠ 1 = 75°, a ∠ 2 = 180° — 75° = 105°.

Пример 2. Две параллельные прямые пересечены третьей. Известно, что сумма двух внутренних накрест лежащих углов равна 150°. Чему равны эти углы и остальные шесть?

Решение. Пусть условию задачи соответствует рисунок 7.

Углы 1 и 2 внутренние накрест лежащие, следовательно, они равны. Сумма этих углов по условию задачи равна 150°, тогда ∠ 1 = ∠ 2 = 75°.

Найдем остальные углы (рис. 8):

∠ 1 = ∠ 3 = 75° и ∠ 2 = ∠ 7 = 75° (вертикальные). Углы 4 и 5, 6 и 8 равны как вертикальные, a ∠ 5 = ∠ 6 как внутренние накрест лежащие. Все перечисленные углы 4, 5, 6 и 8 равны между собой и равны по 105°, так как ∠ 4 + ∠ 3 = 180°, a ∠ 4 = 180° — ∠ 3.

Получили четыре угла по 75°, четыре угла по 105°.

Параллельные прямые признаки доказательства

3.2. Признаки параллельных прямых

Cледующая теорема дает достаточные условия параллельности (т.е. условия, выполнение которых гарантирует параллельность) двух прямых. Иначе такую теорему можно назвать признаком параллельности прямых:

Если внутренние накрест лежащие углы равны, то прямые параллельны.

До ознакомления с доказательством теоремы 3.1 необходимо изучить раздел 4.1 и теоремы 4.1 и 4.2 главы 4. Докажем теорему так называемым методом от противного: предположим, что условие теоремы выполнено, а именно: прямые AB и CD образуют с секущей AC равные внутренние накрестлежащие углы, но вопреки утверждению теоремы прямая AB не паралельна прямой CD и, следовательно, они пересекаются в точке O , которая лежит в одной из полуплоскостей от прямой AC .

Отложим от луча А C треугольник AO 1 C , равный CO А , так, что вершина O 1 лежит в другой, нежели точка O , полуплоскости. Из равенства этих треугольников следует, что , ; по условию: и тогда точки O , C , лежат на одной прямой, и, аналогично, из равенства по условию углов OCA и смежного к BAC следует, что точки O 1, A , O лежат также на одной прямой. Отсюда следует, что через две различные точки O и O 1 плоскости проходят две различные прямые AB и CD . Это противоречит аксиоме 1.2. Полученное противоречие доказывает теорему.

На основании теоремы 3.1 можно легко доказать еще несколько признаков параллельности.

Если соответственные углы равны, то прямые параллельны.

Если сумма внутренних односторонних углов равна 180° , то прямые параллельны.

Из данного утверждения вытекает

Две прямые, перпендикулярные третьей, параллельны.

Параллельные прямые признаки доказательства